
Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities

C. B. Schroeder, E. Esarey, and B. A. Shadwick
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

�Received 12 November 2004; published 22 November 2005�

A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze nonlinear
plasma waves excited by intense drive beams. The maximum amplitude and wavelength are calculated for
nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities. The maximum amplitude is
shown to increase in the presence of a laser field. These results set a limit to the achievable gradient in
plasma-based accelerators.
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Of fundamental interest in plasma physics are highly non-
linear electron plasma waves, such as those produced in the
laboratory via intense laser and beam plasma interactions �1�.
Recent plasma-based accelerator experiments �2–4� have
shown the production of high-quality electron bunches using
ultrahigh gradient ��100 GV/m, several orders of magni-
tude beyond conventional technology� nonlinear plasma
waves driven by intense laser pulses. A basic quantity of
interest in plasma physics, and especially relevant to plasma
accelerators, is the maximum achievable plasma wave am-
plitude �the wave-breaking limit�. Prior calculations �5–9� of
the wave-breaking limit, however, are not valid in the regime
of laser-plasma accelerator experiments.

In this paper, a general result for the maximum field am-
plitude of a nonlinear electron plasma wave of arbitrary
phase velocity in a warm plasma is derived from first prin-
ciples. This result is valid in all regimes of interest, including
that of short-pulse laser-plasma interactions, and reduce to
the previous wave-breaking calculations �5–9� in the appro-
priate limits. The effects of an intense laser field are also
included, as in the self-modulated regime of the laser wake-
field accelerator �10–12�, which is shown to increase the
maximum field amplitude. The maximum field amplitude
sets the fundamental limit to the achievable gradient in
plasma-based accelerators.

Using the cold, relativistic fluid equations in one dimen-
sion, the maximum electric field amplitude of a plasma wave
was found �5� to be EWB=�2���−1�1/2E0, which is referred
to as the cold relativistic wave-breaking field. Here
��

2 =1/ �1−��
2� is the relativistic Lorentz factor, v�=c�� is

the plasma wave phase velocity, and E0=cm�p /e is referred
to as the nonrelativistic wave-breaking field, with
�p= �4�n0e2 /m�1/2 the plasma frequency and n0 the ambient
electron plasma density. For a laser driven plasma wave, v�

is approximately the group velocity of the laser pulse,
����0 /�p, where �0 is the laser frequency. For a charged
particle beam driver, v� is approximately the particle beam
velocity. When the plasma wave field approaches EWB, the
cold plasma density becomes singular n→� �6�. This singu-
larity indicates a breakdown of the cold fluid equations.

Finite temperature fluid theories were applied to calculate
the maximum amplitudes in the limits of nonrelativistic
����1� �7� and ultrarelativistic ���=1� �8,9� plasma waves.
In the ��=1 limit, the maximum field was found �8,9� to be

Eth=�−1/4	th��� ,��E0, where � is the initial plasma tempera-
ture normalized to mc2 /kB, with kB the Boltzmann constant,
and 	th��� ,���1 is a slowly varying function of �� and �.
This expression for Eth is valid for ���1/2
1, e.g., for an
ultrarelativistic ���=1� particle beam driver. For laser-driven
plasma waves, however, typically ���10–100 and
�mc2�10 eV �13,14�. Therefore, a laser-plasma accelerator
typically satisfies ���1/2�1, and, hence, the above expres-
sion for Eth does not apply. Low-energy particle beam-driven
plasma waves also satisfy ���1/2�1, such as those produced
in the first plasma wake-field accelerator experiments �15�.
In addition, Eth does not reduce to the nonrelativistic result
�7� or the cold result EWB.

Standard warm relativistic fluid theories derived for colli-
sionally dominated plasmas �e.g., Ref. �16�� are inadequate
for describing short-pulse laser-plasma interactions. Short-
pulse laser-plasma interactions access a collisionless regime
that is not in local thermodynamical equilibrium, in which
the plasma electrons experience relativistic motion while the
temperature �electron momentum spread� remains small. To
model short-pulse laser-plasma interactions, we start with the
covariant form of the collisionless Boltzmann equation �16�,

p���f − ��e/mc2�F�p���f/�p = 0, �1�

where f�x ,p , t� is the phase-space density, x�= �ct ,x�,
p�= �� ,��� is the normalized particle four momentum,
��= ��ct ,−��, and F��=��A�−��A� is the electromagnetic
field-strength tensor, with A�= �� ,A� the four-vector poten-
tial, and g��=diag�1,−1,−1,−1� the space-time metric ten-
sor.

We consider the following centered moments of the
phase-space distribution �17–19�: ���=��p�−u���p�

−u��fd� and Q��=��p−u��p�−u���p�−u��fd�, where
u�=J� /h is the normalized hydrodynamic four momentum,
h=�fd� the invariant particle density, J�=�p�fd� the fluid
four current, and d�=d3p / p0 the Lorentz invariant
momentum-space volume. Equation �1� implies the exact
conservation laws

���hu�� = 0, �2�

hu���u� + ����� = �− e/mc2�F�hu, �3�
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hu�����/h� + ���u� + ���u� + �Q��

= �− e/mc2��F��
� + F��

�� , �4�

which correspond to the continuity equation, energy-
momentum conservation, and energy-momentum flux con-
servation, respectively. The inhomogeneous Maxwell equa-
tions are expressed as ��F��=4�	sqsJs

�, where the sum is
over species with q the charge.

We will assume a “warm” plasma such that the distribu-
tion f has a small momentum spread about its mean �17–20�.
We make no additional assumptions concerning the specific
form of f . This warm assumption will allow the hierarchy of
moment equations to be truncated. We define the invariant
measure of thermal spread �2=−��

� /h=u�u�−1, where

�
�1 is assumed, such that �th

2 =�2�1+�2�−1��2 is the nor-
malized thermal velocity spread �temperature�. We will as-
sume that in the local plasma rest frame ��� /h=O��2� and
Q�� /h=O��3�. Truncation of the moment hierarchy to order
O��2� is achieved by neglecting the third-order centered mo-
ment Q�� in the fluid equations. Note that � is a Lorentz
invariant and �2�1 is satisfied if the local rest frame tem-
perature of the plasma is nonrelativistic. We consider the
ratio �=np /h �17,19�, where np= �J�J��1/2 is the proper den-
sity, and introduce ��� ,��w�=u�=J� /h, where u�u�=�2

and �−2= �1−w ·w�. Using the contraction of the energy-
momentum stress tensor we find �2=1−��

� /h=1+�2, such
that �= �1−�th

2 �−1/2 is identified as the Lorentz factor associ-
ated with the thermal fluctuations.

Consider a plasma wave driven by a laser pulse propagat-
ing in the z direction with transverse normalized vector po-
tential a�=eA� /mc2 �Coulomb gauge�. We consider one-
dimensional motion such that f =g�z , pz , t��2�p�−a��
and the transverse component of Eq. �3� reduces to
u������w�−a��=0. For an initially quiescent �w=0�
plasma, ��w�=a�, i.e., w�=a��1−wz

2�1/2���
2 +�2�−1/2, with

��= �1+a�
2 �1/2. This is the generalization of canonical trans-

verse fluid momentum conservation including thermal
effects.

The contraction g��Q��=0 �to order O��2�� implies
��0=wz�

�1, and �2=1+ �1−wz
2��11/h. Equations �2�–�4�

can be combined to yield

u����h−3�−2�11� = 0. �5�

For an initially quiescent plasma of density n0, �11/n0
=�2�h /n0�3�, where � is the initial temperature normalized
to mc2 /kB. Equation �5� is equivalent to a statement of en-
tropy conservation.

Next, we assume the quasistatic approximation, such that
the plasma wave driver �e.g., laser field or particle beam� and
fluid quantities are functions only of �=z−��ct. The conti-
nuity equation Eq. �2� becomes

���h����� − wz�� = 0, �6�

or, for an initially quiescent plasma of density n0,
h=n0����1−��

−1wz��−1. The components of Eq. �3� can be
combined to yield �using ��0=wz�

�1 and Eq. �6��

����h�2�2 + �11��1 − ��wz��1 − ��
−1wz�� = n0��� , �7�

where �=e� /mc2 is the normalized space-charge potential
of the plasma wave and ����2= ���

2 +�2� / �1−wz
2�. Using

Eqs. �5� and �6�, Eq. �7� can be written as the following
longitudinal constant of motion �conservation of energy in
the wave frame�:

������1 − ��wz�
�1 − wz

2�1/2 − � +
3

2
�

�1 − ��wz��1 − wz
2�1/2

���1 − ��
−1wz�2 � = 0.

�8�

The third term on the right-hand side of Eq. �8� is due to the
energy in the thermal fluctuations �pressure�.

The plasma wave potential is determined by the Poisson
equation c2��

2�=�p
2�J0 /n0−1+nb /n0�, where nb /n0 is the

normalized density of a beam driver, J0 /n0=��h /n0
=�� / ���−wz�, and the ions are assumed stationary. The
Poisson equation can be combined with Eq. �8� to yield the
evolution equation for the axial plasma fluid velocity wz.

We consider the cases of plasma wave excitation behind a
beam driver where nb���=0, behind a short laser driver �e.g.,
the standard laser wake-field regime� where ��=1, and ex-
citation under a long laser pulse �e.g., the self-modulated
laser wakefield regime� where ��

−1
�c /�p�����
�1 and
���constant. Using Eq. �8�, the first integral of the
Poisson equation is �assuming nb=0 and ��=constant�
Ê2=����0−�+�0

−1−�−1�+ �F��0�−F����� /��, where

�2= �1−wz� / �1+wz�, Ê=E /E0=−�c /�p�����w�,

F��� =
6��

2���1 − �4� − ����4 − 2�2/3 + 1��
��1 − ��� − �1 + ����2�3 , �9�

and �0 corresponds to the momentum that produces the ex-

tremum of � �i.e., Ê��0�=0�.
Solving ���=0 �i.e., a quartic equation for �0

2�, yields the
momentum that produces the extremum of �,

�0
2 = ��

2�1 − ���2 +
1

2
��

−2�1 + ���−23��
2�

+ ���48���
2 /��

2 + 9��
2�2�1/2 + �6���

2�10��
2 /��

2 + 3��
2��

+ 2���2��
2 /��

2 + 3��
2���48���

2 /��
2 + 9��

2�2�1/2�1/2� .

�10�

Equation �10� determines the fluid momentum at the maxi-
mum compression of the plasma. In the cold limit ��=0�,
�0

2=��
2�1−���2, and the extremum of the potential occurs

when the axial fluid velocity equals the phase velocity of the
wave, i.e., wz=��. In the ultrahigh phase velocity limit
���=1�, �0

2=3��
−2� /2.

Using the Poisson equation, the phase where Ê is maxi-

mum ���Ê=0� occurs at the momentum �=1 �i.e., wz=0�.
Evaluating Ê2 at �=1 yields

Êmax
2 = ����0 + �0

−1 − 2� + �F��0� − 1��/��, �11�

where F��0� is given by Eqs. �9� and �10�. Equation �11� is
the main result of this paper, and determines the maximum
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field amplitude Emax of a nonlinear plasma wave with phase
velocity �� excited in a plasma with initial temperature
�. The maximum density perturbation is given by
�J0 /n0�max= �1−��

−1�1−�0
2� / �1+�0

2��−1. Note that the maxi-
mum plasma density perturbation in a warm plasma does not
become singular, as in the cold fluid theory �5,6�.

In the cold plasma limit ��=0�, Eq. �11� reduces to

Êmax
2 ��=0�=2�����−1�. This is a generalization of the cold

relativistic wave-breaking field �5� to include a laser field.

Note that Êmax
2 ��=0� is the same as the threshold field for

trapping background plasma electrons in a cold plasma wave
�21� �since the cold fluid element orbits are identical to the
particle orbits�.

For ���1, Eq. �11� reduces to

Êmax
2

����
2 � 1 −

8

3
� 3�

��
2 ��

2 �1/4

+ 2� 3�

��
2 ��

2 �1/2

−
1

3
� 3�

��
2 ��

2 � ,

�12�

where terms of order O����
2� have been neglected. For

��=1, Eq. �12� is identical to the result of Ref. �7�.
For ��=1 �e.g., an ultrarelativistic electron beam driver

satisfying ��
−2���1�, Eq. �11� reduces to

Êmax
2 = ��

2 �2/3�3/2�−1/2�1 − ��
−1�3�/2�1/2�3. �13�

For the case ��=1, Eq. �13� scales to leading order as
Emax=�−1/4	thE0. Except for the factor 	th�1, this scaling is
the same as that obtained in Refs. �8,9�.

In the limit, ����
2 /��

2 �1, Eq. �11� reduces to

Êmax
2 � 2����� − 1� − 2���4

3
�3��

2��
2 ��1/4 − �3��

2��1/2� .

�14�

Equation �14� is the cold relativistic wave-breaking field
�generalized to include a laser field� with the lowest order
reduction due to the plasma temperature. For high-intensity
lasers �a��1�, Eq. �14� indicates that Emax inside a laser
pulse is significantly larger compared to behind the pulse
�where a�=0�. For a laser driver, the phase velocity of the
plasma wave is approximately the nonlinear group velocity
of the laser pulse, i.e., �������1+��� /2�1/2��0 /�p�. There-

fore, for ultrahigh intensities �a�
1�, Êmax��2�����1/2

�a���0 /�p�1/2 in the limit ����
2 /��

2 �1.
The transition from the laser-driven regime ���

2��1� to
the ultrarelativistic beam-driven regime ���

2�
1� is shown

in Fig. 1, which plots Êmax �Eq. �11�� vs ��
2� for �=10−3,

�=10−4, and �=10−5 with ��=1. The dashed lines in Fig. 1
are the ��=1 limit �Eq. �13��. Note that for typical short-
pulse laser-plasma-interactions, �mc2�10 eV �13,14�, or
��10−5−10−4. Figure 1 shows the inaccuracy of using the
ultrahigh phase velocity approximation ���=1� in the laser-
plasma accelerator parameter regime ����

2 �1�.
The wavelength �osc of the nonlinear plasma oscillation

at the maximum amplitude is computed from Ê by �osc

=�d�=−2c�p
−1��d� /d��Ê−1d� between the extrema of �.

Figure 2 shows the wavelength of the plasma oscillation �osc

at the maximum amplitude normalized to �p=2�c /�p vs ��

for initial temperatures �=10−3, �=10−4, and �=10−5, with
��=1. The dashed line in Fig. 2 shows �osc /�p for an ini-
tially cold plasma �=0.

The temperature �thermal velocity spread� evolution is
given by �th

2 =�2=��1−wz
2��2�h /n0�2, which is maximum at

the maximum compression of the plasma ��=�0�, i.e.,
�max

2 =4�0
2��1+�0

2�−��
−1�1−�0

2��−2�. For an ultrarelativistic
beam driver ���=1 and ��=1�, �max

2 =2/3 �the upper bound
of �max

2 �����. In the limit ����
2 /��

2 �1 �e.g., laser driver�,
the maximum temperature is, to leading order,
�max

2 ������
2� /3�1/2�1− �3��

2��1/2 / �4�����1, which con-
firms the validity of the warm plasma approximation �2�1.

The above results for Êmax are independent of the driver.
Consider excitation by a laser pulse with length optimized to
maximize the wave amplitude. As the laser intensity in-
creases, the wave amplitude increases, up to the amplitude at

which 
Ê
= Êmax, which is first reached behind the laser pulse
�where ��=1�. Note that the maximum density compression

occurs at the phase where Ê=0, which is at a phase behind

that where 
Ê
= Êmax in a warm plasma. Physically, the limit

FIG. 1. Maximum plasma wave electric field Êmax=Emax/E0

�Eq. �11�� vs ���
2 for initial temperatures �=10−3, �=10−4, and

�=10−5, with ��=1. Dashed lines are the ultrahigh phase velocity
result ��=1 �Eq. �13��.

FIG. 2. Normalized nonlinear plasma wavelength �osc/�p at the
maximum plasma wave amplitude vs �� for initial temperatures
�=10−3, �=10−4, and �=10−5, with ��=1. The dashed line is the
cold limit �=0.
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on the wave amplitude is due to the pressure force. As the
plasma becomes highly compressed, the pressure force
grows, ultimately limiting the density compression and
therefore the wave amplitude. This is in contrast to cold fluid
theories where the maximum field is reached when the den-
sity becomes singular �and shock formation occurs�. For
larger drive intensities, no force balance is possible, and no
traveling wave solutions exist.

For a laser with a square pulse profile, the maximum am-
plitude is obtained when the laser pulse length is of an opti-
mal value such that ���=0 at the end of the laser pulse. Note
that, for an optimal length driver, the laser initially reduces
the plasma density and the pressure force will remain small
during the excitation of the plasma wave by the laser
pulse. For relativistic plasma waves ���

2 
1�, the laser inten-
sity required to excite the maximum field Eq. �11� is ��

� Êmax/2+ ��Êmax/2�2+1�1/2. The limits ��
2 
1 and ��

2��1
imply ����2���1− �23/2 /3����

2� /2�1/4+ �5/9����
2� /2�1/2�.

In this paper a comprehensive theory has been presented
that describes the properties of nonlinear electron plasma
waves with arbitrary phase velocity in a warm plasma, in-
cluding the presence of an intense laser field. An analytical
result for the maximum field amplitude is derived, Eq. �11�.
Equation �11� is capable of describing the regime of current
ultraintense short-pulse laser interactions with underdense
plasma, in contrast to previous results that are limited to
ultrarelativistic particle drive beams. The maximum field is
larger in the presence of an intense laser field. These results
place a fundamental limit on the accelerating gradient in
plasma-based accelerators.
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